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The model under consideration is the two-dimensional Coulomb gas of ±
charged hard disks with diameter s. For the case of pointlike charges (s=0),
the system is stable against collapse of positive-negative pairs of charges in the
range of inverse temperatures 0 [ b < 2, where its full exact thermodynamics
was obtained recently. In the present work, we derive the leading correction to
the exact thermodynamics of pointlike charges due to presence of the hard core
s which enables us to extend the treatment beyond the collapse point b=2. Our
results, which are conjectured to be exact in the low-density limit in the interval
0 [ b < 3, reproduce correctly the singularities of thermodynamic quantities at
the collapse point and agree well with Monte-Carlo simulations. The ‘‘subtrac-
tion’’ mechanism within the ansatz proposed by M. E. Fisher et al. [J. Stat.
Phys. 79:1 (1995)], which excludes the existence of intermediate phases between
the collapse point b=2 and the Kosterlitz–Thouless transition point bKT=4, is
confirmed, however, a different analytic structure of this ansatz is suggested.

KEY WORDS: Coulomb gas; thermodynamics; charge pairing; low-density
limit, sum rule.

1. INTRODUCTION AND STRATEGY

The model under consideration is the two-dimensional Coulomb gas
(2dCG), i.e., a neutral system of positive and negative unit charges qi=±1
in an infinite plane of points r ¥ R2, interacting through the pair potential

v(ri, rj)=˛
−qiqj ln (|ri− rj |/L), |ri− rj | > s

., |ri− rj | [ s
(1.1)



Here, the logarithmic Coulomb potential is the solution of the 2d Poisson
equation Dv(r)=−2pd(r). The Coulomb potential is regularized at short
distance by a hard-core potential of diameter s around each charge. The
system is studied as the classical one and in thermodynamic equilibrium,
via the grand canonical ensemble characterized by the (dimensionless)
inverse temperature b and the couple of equal particle fugacities
z+=z−=z. The fugacity z has dimension [length]−2. Within the grand
canonical formalism, the length scale L in (1.1) manifests itself as the
rescaling of z, zQ Lb/2z. We shall set L to unity for simplicity, keeping in
mind that the true dimension of the rescaled z is [length]b/2−2. The corre-
sponding particle number densities n+=n−=n/2 (n is the total particle
density) enter into the formalism in the dimensionless combination ns2.

For small values of the dimensionless density ns2, the famous Kosterlitz–
Thouless (KT) transition (1) of infinite order takes place at a specific density-
dependent inverse temperature bKT. (2, 3) In the high-temperature conducting
phase b < bKT, the effective potential between infinitesimal external charges
decays exponentially due to perfect screening by the positive and negative
charges of the Coulomb system. In the low-temperature dielectric phase
b > bKT, the system charges form dipoles and no longer screen an external
charge, so that the effective potential between infinitesimal external charges
is proportional to the bare logarithmic potential. At high enough ns2, the
KT critical line splits into a first order liquid-gas coexistence curve (for
Monte-Carlo (MC) simulations, see refs. 4 and 5, for theoretical computa-
tion, see ref. 2).

In the low-density limit ns2Q 0, which is of special interest in general
and also in this paper, the thermodynamic behavior of the 2dCG as a
function of b undergoes fundamental changes at two points: bc=2 (the
collapse of pointlike particles) and bKT=4 (the KT phase transition). The
first (collapse) point reflects the fact that, for the case of strictly pointlike
particles s=0, the singularity of the Coulomb potential v(r) (1.1) at the
origin prevents the thermodynamic stability against collapse of positive-
negative pairs of charges (or, equivalently, the corresponding Boltzmann
factor r−b is not integrable at short distances in 2d) for b \ 2. Thus, for
0 [ b < 2, the system of pointlike particles is thermodynamically stable and
the introduction of a hard core around particles is a marginal perturbation
which does not change the thermodynamics substantially. On the other
hand, for 2 [ b < 4, the introduction of a hard core is inevitable for avoid-
ing the collapse: when one calculates thermodynamic quantities and at the
end takes the limit sQ 0 (with z being fixed), while the density, the free
energy and the internal energy per particle diverge due to collapse pheno-
menon, the specific heat and the truncated (Ursell) correlation functions
are expected to remain finite. (6) In spite of the tendency to the collapse into
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neutral pairs of charges, there still exist free charges which are able to
screen and the system remains in its conducting phase up to the KT phase
transition at point bKT=4. We would like to stress that, for a given fuga-
city z and when 2 [ b < 4, although nQ. as sQ 0, the dimensionless
density is supposed to go to the limit of interest, ns2Q 0.

In what follows, we shall summarize in detail the known results in the
two qualitatively different regimes (0 [ b < 2) and (2 < b < 4), and at the
collapse point bc=2.

In the stability range of inverse temperatures 0 [ b < 2, as has been
already mentioned, the thermodynamics of the 2dCG is well defined even
for the case of pointlike particles, s=0. The density derivatives of the
Helmholtz free energy, like the pressure p, can be calculated exactly by
using a simple scaling argument. For instance, the equation of state

bp=n 11−b
4
2 (1.2)

has been known for a very long time. (7) The temperature derivatives of the
Helmholtz free energy, like the internal energy U or the constant volume
(surface in 2d) specific heat CV, are nontrivial quantities, the calculation
of which can be based on an explicit density-fugacity relationship. This
relationship was obtained only recently (8) via a mapping of the 2dCG
onto a classical 2d sine-Gordon theory with a specific normalization of the
cos-field, and then by using quite recent results about that integrable field
theory. (9, 10) Explicitly one finds

n
z4/(4−b)

=1pb
8
2b/(4−b) 52 C(1−b/4)

C(1+b/4)
64/(4−b)

×
C2(1+b/[2(4−b)])

(1/p) C2(1/2+b/[2(4−b)])
tg(pb/[2(4−b)])
pb/[2(4−b)]

(1.3)

where C stands for the Gamma function The density-fugacity relationship
(1.3) was checked on a few lower orders of its high-temperature b-expan-
sion by using a renormalized Mayer expansion in density, valid just in the
stability regime. For fixed z, the particle density exhibits the expected
collapse singularity as bQ 2−:

n ’
4pz2

2−b
(1.4)

This behavior can be derived by using an independent-pair picture of the
system around the collapse point, (6) which is another check of the exact
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results. Based on the density-fugacity relationship (1.3), the complete
thermodynamics of the pointlike CG can be obtained by elementary means
in the whole stability interval 0 [ b < 2. (8)

At the collapse point bc=2, by the continualization of Gaudin’s
lattice model, (11) which is expected to have the same properties as the 2dCG
in the low-density limit, the truncated many-body densities (Ursell func-
tions) were found in refs. 12 and 13. These densities have the remarkable
property of going to well-defined limits as ns2 vanishes (as is believed, this
property lasts up to the KT phase transition), identical to the densities of
an equivalent Thirring model at the free-fermion point. The knowledge
of all truncated many-body densities at bc=2 for ns2=0 permits one to
extract the leading parts of thermodynamic quantities at b=2 which, for a
fixed fugacity z, do not vanish in the low-density limit ns2Q 0. (12) Namely,

n=4pz2 5ln 1 1
spz
2−C+O(1)6 (1.5a)

bp=2pz2 5ln 1 1
spz
2−C+1

2
+O(1)6 (1.5b)

uex=
1
4
5ln 1 s

pz
2−C+O(1)6 (1.5c)

cexV
kB
=
1
6
5ln 1 1

spz
2−C6

2

−
1
4
5ln 1 1

spz
2−C6−1

8
+O 1 1

ln(spz)
2 (1.5d)

Here, uex=OEP/N is the excess (over ideal) internal energy per particle,
cexV=C

ex
V /N is the excess specific heat at constant volume per particle, and

C is the Euler constant.
The region of inverse temperatures 2 [ b < 4 is usually studied by

using the Mayer series expansion of the specific grand potential in fugacity.
It was proven that each term of the z-series converges in the insulator
region b > 4. (14, 15) For b [ 4, the existence of infinitely many thresholds at
inverse temperatures

bl=4 11−
1
2l
2 , l=1, 2,... (1.6)

lying between b1=bc=2 and b.=bKT=4, was observed by Gallavotti
and Nicoló (14): if b > bl, only the Mayer series coefficients (cluster
integrals) up to the order 2l are finite, and the cluster integrals of order
> 2l exhibit a large-distance divergence in the infinite-volume limit. Below
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the collapse point b < 2 (where the density format is appropriate) all cluster
integrals diverge. The free energy is supposed to have at points {bl}

.

l=1 a
logarithmic dependence on the cut-off (in our case ns2). (16) Points {bl}

.

l=1

were conjectured to correspond to a sequence of transitions from the pure
multipole insulating phase (b > 4) to the conducting phase (b < 2) via an
infinite number of intermediate phases. (14)

Such a conjecture was later denied by Fisher et al. (17) In the limit
ns2Q 0, they proposed the following ansatz for the equation of state in the
fugacity format:3

3 We rescale z by s (4−b)/2 in the ansatz in order to work with dimensionless quantities.

bp=bk(b) z2k(b)[1+e(zs (4−b)/2, b)]+
1
s2

C
.

l=1
b̄2l(b)[zs (4−b)/2]2l (1.7)

where the temperature-dependent exponent is

2k(b)=
4
4−b

(1.8)

The function e vanishes as ns2Q 0. At points bl [see relation (1.6)],
k(bl)=l. The coefficient bk(b) and the function e(zs (4−b)/2, b) were
suggested to be analytic in the whole conducting regime 0 [ b < 4. The
coefficients {b̄2l(b)}

.

l=1 were suggested to be zero for 0 [ b < 2, and finite,
analytic in b, for 2 [ b < 4. The divergence of the coefficients of an analytic
expansion in z2 was related to the appearance of the anomalous term bkz2k

in (1.7). Moreover, at bKT=4, k(bKT) becomes infinite and the anomalous
term disappears from the ansatz, in agreement with the results of refs. 14
and 15.

The ansatz for the equation of state of the 2dCG (1.7) is consistent
with the singular behavior of the fugacity series, (14) but does not imply the
existence of low-density phase transitions between intermediate phases,
which is in full agreement with the MC simulations. (4, 5) However, the
supposed analytic behavior of the coefficients bk(b) and {b̄2l(b)}

.

l=1 is an
ad-hoc assumption which must be tested on particular cases and in special
limits. The test on the combined Debye–Hückel and Bjerrum theories, (17)

which are essentially the mean-field ones, is not sufficient. Having at
disposal the exact thermodynamics of the pointlike 2dCG in the stability
region, (8) we now derive the exact form of the coefficient bk(b) in the sta-
bility region which does not exhibit the analytic structure proposed by
Fisher et al. (17) In the stability region 0 [ b < 2, the presence of the hard

Thermodynamic Properties of the 2D Coulomb Gas 861



core s is a minor perturbation of the system of pointlike particles and one
can consider the case of pointlike particles ns2=0 (or, equivalently, z fixed
and s=0) in the ansatz (1.7). The equation of state (1.2), when combined
with the ansatz (1.7) with the function e=0, yields

bk(b)=11−
b

4
2 n
z4/(4−b)

(1.9)

Substituting n/z4/(4−b) by the rhs of (1.3), we get the exact bk(b) which
behaves as follows

bk(b)3 tg 1 pb
2(4−b)
2 , 0 [ b < 2 (1.10)

Here, the proportionality factor is an analytic function of b for 0 [ b < 4.
The tg-function has the simple pole just at the collapse point b1=bc=2.
This simple pole is nothing but a consequence of the collapse phenomenon:
for a fixed finite z, nQ. when approaching the collapse point bc=2.
According to (1.5), the divergence of n at bc=2 is logarithmic in the
dimensionless sz, so that the dimensionless density ns2 is still very small
when sQ 0 as is required in the ansatz proposal (1.7). It is interesting to
notice that a ‘‘naive’’ analytic continuation of the exact bk(b) (1.10) from
the stability region to the range of inverse temperatures 2 [ b < 4 has the
singularities just at the thresholds {bl}

.

l=1 given by (1.6). Indeed, the
decomposition of the tg-function into simple fractions (18) gives

tg(pb/[2(4−b)])
pb/[2(4−b)]

=
2
p2

C
.

l=1

1
(bl−b)

(4−b)2(4−bl)2

b(4−bl)+bl(4−b)
(1.11)

The thresholds {bl}
.

l=1 manifest themselves as simple poles at which bk
exhibits the discontinuity from limbQ b

−
l
bk(b)Q. to limbQ b

+
l
bk(b)

Q −..
The aim of this paper is to develop a technical basis for the ansatz

(1.7) in order to understand its analytic structure discussed in the above
two paragraphs. We do not enter the region of particular interest 2 [ b < 4
from the low-temperature KT side (b > 4) as is usual in the approaches
based on the fugacity series expansions, but from the high-temperature
stability side (b < 2). In this stability region, we derive the leading correc-
tion to the exact thermodynamics of pointlike charges (8) due to presence of
the hard core of diameter s. This is done by combining the zeroth-moment
(electroneutrality) sum rule for the pair charge-charge correlation function (19)
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with the knowledge of the leading term of the short-distance expansion of
that charge-charge correlation. Since both the electroneutrality sum rule
and the leading short-distance expansion term remain valid up to the KT
transition, we analytically extend our results from the stability region
beyond the collapse point. The results, which are conjectured to be exact in
the low-density limit ns2Q 0 in the whole interval 0 [ b < 3, reproduce
correctly the singularities of thermodynamic quantities at the collapse point
bc=2 and agree well with the MC simulations. (4) In the leading order, we
recover the ansatz (1.7) where the leading coefficient in the sum, b̄2, has
the simple pole at the collapse point b1=bc=2 which exactly cancels the
simple pole of bk at bc=2. Our results thus confirm the ‘‘subtraction’’
mechanism of Fisher et al. (17) which excludes the existence of intermediate
phases proposed by Gallavotti and Nicoló, (14) however, the coefficients
{b̄2l}

.

l=1 turn out to be nonzero in the whole interval 0 [ b < 4. They are
suggested to exhibit simple poles at the corresponding points {bl}

.

l=1 (1.6)
which exactly cancel the corresponding simple poles of the anomaly coeffi-
cient bk(b) occurring at the same points.

The paper is organized as follows. The method is described in Section 2.
The complete thermodynamics in the leading order in s is derived and then
tested in various limits in Section 3. In Section 4, the comparison of our
results is made with the MC simulations. In Section 5, a brief recapitula-
tion is presented. A possible extension of our results to higher orders in s is
also discussed and some concluding remarks are given.

2. METHOD

In the conducting phase of the two-component plasma with the
Coulomb plus an arbitrary short-range pair interaction of particles, the
zeroth and second moments of the charge-charge density are determined
exclusively by the long-range tail of the Coulomb potential. (19) The starting
point of our calculation is the zeroth-moment (electroneutrality) sum rule

nq=F [Uq, −q(r)−Uq, q(r)] d2r (2.1)

Here, with the notation n̂q(r)=; i dq, qid(r− ri) for the microscopic density
of particles of charge q=±1 at position r, nq=On̂q(r)P=n/2 and the
Ursell function Uq, qŒ(r, rŒ)=Uq, qŒ(|r− rŒ|) (denoted as r(2) Tq, qŒ in refs. 12 and 13)
is defined by

Uq, qŒ(r, rŒ)=On̂q(r) n̂qŒ(rŒ)P−nqdq, qŒd(r− rŒ)−nqnqŒ (2.2)
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For the Coulomb system of interest (1.1), the difference Uq, −q−Uq, q
vanishes inside the hard core, and the total particle number density n is
given by

n(z, s)=2 F
.

s

2pr dr[Uq, −q(r; z, s)−Uq, q(r; z, s)] (2.3)

Hereinafter, we omit in the notation the dependence of quantities on b.
The dependence of the density n on s in (2.3) comes from the cutoff in

the integration over r and from the s-dependence of the Ursell functions
themselves. These Ursell functions are supposed to be well defined and
finite for the zero density, ns2=0, in the whole conducting regime
0 [ b < 4, including the collapse interval 2 [ b < 4. This belief is strongly
supported by the finite values of the Ursell functions at the collapse point
bc=2 (12, 13):

Uq, −q(r; z, 0)=1
m2

2p
22 K21(mr) (2.4a)

Uq, q(r; z, 0)=−1
m2

2p
22 K20(mr) (2.4b)

with fixed m=2pz, K0 and K1 are modified Bessel functions. We can thus
write

Uq, qŒ(r; z, s)=Uq, qŒ(r; z, 0)+Dq, qŒ(r; z, s), r \ s (2.5)

which defines Dq, qŒ(r; z, s), vanishing when sQ 0, as the change of
Uq, qŒ(r; z, 0) due to the introduction of the hard core s [ r to pointlike
particles. Subtracting Eq. (2.3) with s > 0 and the same equation with
s=0, one arrives at

n(z, s)−n(z, 0)=−2 F
s

0
2pr dr[Uq, −q(r; z, 0)−Uq, q(r; z, 0)]

+2 F
.

s

2pr dr[Dq, −q(r; z, s)−Dq, q(r; z, s)] (2.6)

Since n(z, 0) is defined only in the stability regime 0 [ b < 2, for the time
being we shall restrict ourselves to this range of b. We now make a heuristic
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assumption analogous to that made at the point bc=2 in refs. 12 and 13:
in the low-density limit ns2Q 0 and for 0 [ b < 4, one can neglect the
quantities Dq, ±q in Eq. (2.6). Consequently,

n(z, s)=n(z, 0)−2 F
s

0
2pr dr[Uq, −q(r; z, 0)−Uq, q(r; z, 0)] (2.7)

Our assumption is equivalent to saying that in equation (2.6) only the
contribution 3 >s0 r dr[Uq, −q(r; z, 0)−Uq, q(r; z, 0)] with s > 0 is enough
for removing, via a systematic short-distance expansions of Uq, ±q(r; z, 0),
term by term the singularities of n(z, 0) at points {bl}

.

l=1 (see the Intro-
duction). This scenario will be verified at the first singular point
b1=bc=2.

The next step is to construct the short-distance expansions of
Uq, ±q(r; z, 0) in the integral on the rhs of (2.7). For small enough b, the
short-distance expansion of the Ursell functions is dominated by the
Boltzmann factor of the corresponding pair Coulomb potential. (20, 21) In the
case of oppositely charged particles, one has

Uq, −q(r; z, 0) ’ z2r−b as rQ 0 (2.8)

valid in the whole interval 0 [ b < 4. Note that since K1(mr) ’ 1/(mr) for
rQ 0, Uq, −q(r; z, 0) at bc=2 [see relation (2.4a)] satisfies (2.8). In the case
of the same charges, the leading term has a more complicated structure,

Uq, q(r; z, 0)3 ˛
rb for 0 [ b < 1

r2−b for 1 [ b < 2
as rQ 0 (2.9)

The change of the power-law behavior is caused by the divergence of the
prefactor to rb at b=1. (21) Considering in (2.4b) that K0(mr) ’ − ln r for
rQ 0, the logarithmic behavior of Uq, q(r; z, 0) at bc=2 can be understood
as a limiting case of r2−b in (2.9). Within the sine-Gordon representation of
the 2d pointlike CG, the formula corresponding to (2.8) is known as the
conformal normalization of the cos-field. For such a theory, the short-dis-
tance expansion of correlation functions is available by using the Operator
Product Expansion, (22) as was explicitly done in ref. 23. Although this
method allows one to construct systematically the short-distance expan-
sions of Uq, ±q(r; z, 0) with coefficients expressed in terms of Dotsenko–
Fateev integrals, (24) it applies only to small values of b and does not
describe, e.g., the change of the behavior at b=1 (2.9). In any case, in the
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interval 0 [ b < 4, the charge–charge combination of the Ursell functions is
dominated at short distances by (2.8),

Uq, −q(r; z, 0)−Uq, q(r; z, 0) ’ z2r−b as rQ 0 (2.10)

and we shall consider just this leading term.
Inserting (2.10) into (2.7), one obtains the basic formula

n(z, s)=n(z, 0)−4pz2
s2−b

2−b
(2.11)

Although this result was derived in the region 0 [ b < 2 where n(z, 0) is
well defined by (1.3), it is reasonable to assume the continuation of (2.11)
beyond the collapse point bc=2 because both the sum rule (2.3) and the
leading short-distance expansion (2.10), which play the crucial role in the
derivation of (2.11), remain valid up to the KT transition at bKT=4. As
will be shown in the subsequent section, the leading correction term in
Eq. (2.11) removes the singularity of n(z, 0) at b1=bc=2, and provides an
adequate description of the 2dCG with ns2 small up to b2=3 where
another singularity of n(z, 0) occurs. This singularity at b2=3 should be
removed by the next term of the short-distance expansion (2.10) inserted
into (2.7), however, as was mentioned above, it is not simple to get the
explicit form of that term for such a large value of b. In any case, for
dimensional reasons, the next term in (2.11) must be proportional to
z4s6−2b (see the analysis in Section 5), and therefore it vanishes in the low-
density limit for b < b2.

3. THERMODYNAMICS

Based on the density-fugacity relationship (2.11), we derive in this
section the thermodynamics of the 2dCG in the restricted region of interest
0 [ b < 3. Our findings will be compared with the known results and
conjectures reviewed in the Introduction, namely with the exact formulae at
bc=2 (1.5), with the predictions based on the independent-pair collapse
picture for b > 2 and in the limit sQ 0, (6) and with the proposal (1.7) for
the equation of state. The stability regime 0 [ b < 2 will not be discussed in
detail since there the introduction of the hard core to pointlike particles is a
marginal perturbation.

We first express the relation (1.3) for the density of pointlike particles
n(z, 0) in a more convenient form,

n(z, 0)=
4pF(b)
2−b

z4/(4−b) (3.1)
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where we have introduced the function

F(b)=1pb
8
2b/(4−b) 52 C(1−b/4)

C(1+b/4)
64/(4−b) 2−b

4p

×
C2(1+b/[2(4−b)])

(1/p) C2(1/2+b/[2(4−b)])
tg(pb/[2(4−b)])
pb/[2(4−b)]

(3.2)

With regard to the collapse singularity (1.4), F was chosen such that
F(b=2)=1. The Taylor expansion of ln F(b) around b=2 thus reads

ln F(b)=(ln p+C)(b−2)+
1
2
(ln p+C)(b−2)2

+
1
4
5ln p+C−17

12
z(3)6(b−2)3+·· · (3.3)

The function F(b) is positive in the interval 0 [ b < 8/3, it crosses zero at
point b=8/3 (which is not exceptional from any point of view) and
diverges to −. as bQ 3. Using the representation (3.1) in Eq. (2.11), one
gets for n=n(z, s)

n=
4p
2−b

z4/(4−b)[F(b)−(sz2/(4−b))2−b] (3.4)

Notice that this relation is dimensionally correct—it is expressible in terms
of dimensionless quantities

t=sz2/(4−b) (3.5)

and ns2, or the packing fraction

g=1
4pns

2 (3.6)

used in the MC simulations. (4) Taking into account the expansion (3.3) in
Eq. (3.4) one sees that, for fixed z and nonzero s, the density n is finite at
bc=2; its value coincides with the expected result (1.5a). Formula (3.4) can
be analytically continued to the region 2 < b < 3. For b > 2 and small s,
the term [sz2/(4−b)]2−b becomes larger than F(b) and, when combined with
the negative denominator (2−b), it implies the positive sign of n up to
b=3. When sQ 0, this term and consequently n diverge in the region
2 [ b < 3 as a consequence of the collapse phenomenon.
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We proceed by the derivation of the equation of state. The grand
canonical potential W is determined by the thermodynamic relation

n=z
“(−bW/V)
“z

(3.7)

where V(Q.) is the volume (in 2d, the surface) of the homogeneous
system. With respect to the boundary condition (−bW/V)|z=0=0, the
integration of (3.7), with n substituted from Eq. (3.4), results in the equa-
tion of state for bp=−bW/V,

bp=
p(4−b)
2−b

F(b) z4/(4−b)−
2p

s2(2−b)
(zs (4−b)/2)2 (3.8)

Eq. (3.8) has the form of the ansatz (1.7) with

bk=
p(4−b)
2−b

F(b), b̄2=−
2p
2−b

(3.9)

In contrast to the conjecture made in ref. 17, these coefficients are not
analytic functions of b at b=2. Let us now rewrite the equation of state
(3.8) with the aid of the density-fugacity relationship (3.4) as follows

bp
n
=
1
2
+
(2−b) F
4(F−t2−b)

(3.10)

where t is defined by (3.5). At bc=2 and for nonzero s, (3.10) agrees with
relations (1.5a) and (1.5b). In the limit of pointlike particles sQ 0, our
equation of state (3.10) reduces to the one obtained by Hauge and
Hemmer (6): in the stability regime 0 [ b < 2, the hard-core correction t2−b

is negligible for small s and the sQ 0 limit corresponds to (1.2), while for
2 < b < 3 t2−b diverges when sQ 0 and so bp/nQ 1/2, i.e., the pairs of
±1 charged particles collapse into neutral ‘‘free’’ particles of half density
n/2.

Finally, the (excess) dimensionless specific free energy f=bFex/N
reads

f(n, b)=
bW

nV
+ln z

=−
1
2
−
(2−b) F
4(F−t2−b)

+ln z (3.11)
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where the implicit dependence of the fugacity z(n, b) on the particle density
n is determined by Eq. (3.4). According to the elementary thermodynamics,
the (excess) internal energy per particle uex is given by uex=“f(n, b)/“b,
explicitly

uex=
1
2

ln s−
1

2(2−b)
−

1
2(F−t2−b)

512−b
2
2 FŒ+F ln t6 (3.12)

and the (excess) specific heat at constant volume per particle cexV is given by
cexV /kB=−b

2
“
2f(n, b)/“b2, explicitly

1
b2
cexV
kB
=

1
2(2−b)2

+
(4−b) Fœ
4(F−t2−b)

−
1

2(2−b)(F−t2−b)[F−(2−b/2) t2−b]

×3(2−b) FŒ 5F+12−b
2
2 FŒ6+(F−t2−b) F

2

+(2−b) t2−b(ln t)[(1+ln t) F+(4−b) FŒ]} (3.13)

At bc=2 and for nonzero s, uex is identical to (1.5c), while

cexV (b=2)
kB

=
1
3
[ln(pzs)+C]3+2[ln(pzs)+C]2

1+2[ln(pzs)+C]
−
17
12
z(3)

1
[ln(pzs)+C]

(3.14)

The expansion of this expression into the Laurent series in 1/[ln(pzs)+C]
reproduces the leading terms in (1.5d).

All formulae derived above involve all corrections to the thermo-
dynamic quantities which come from the leading term of the short-distance
expansion of the Ursell functions, see formula (2.8). As was discussed in
the last paragraph of Section 2, the next terms of this short-distance
expansion depend on higher powers of r and they are vanishing in the limit
sQ 0 up to b2=3. Consequently, at b=2, the neglected corrections to
n,..., cexV /kB behave according to the power-law in zs which is a much
quicker decay than 1/ln(pzs) in the limit zsQ 0. In this sense we believe
that our results are exact in the low-density limit at b=2, and even for
b < 3.

As a further test of our results, in the region 2 < b < 3 and in the limit
sQ 0, uex diverges to −. due to the term (ln s)/2 involving the energy of
the collapsed pair of particles. cexV behaves differently: t2−b becomes large
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for small s and kills all terms on the rhs of (3.13), except of the first one.
The consequent finite result cexV /kB=b

2/[2(2−b)2] coincides with the
finding of ref. 6.

4. COMPARISON WITH MC SIMULATIONS

In the previous two sections, we have derived the thermodynamics of
the 2dCG by adding the leading hard-core correction term to the exact
density-fugacity relationship for the Coulomb system of pointlike particles.
We have successfully tested various limits of our results. In this section, the
comparison is made with the MC simulations of the 2dCG. (4)

Our result (3.14) for the heat capacity cexV at the collapse point bc=2,
as the function of the packing fraction g (3.6), is represented in Fig. 1. by
the solid line. The agreement with the MC simulations is much better than
in the case of the previously derived formula (1.5d) (triangles), which
involves the first three terms of the Laurent expansion of (3.14).

In Figs. 2 and 3, we represent by solid lines our plots of the internal
energy uex (3.12) and the heat capacity cexV (3.13), respectively, versus the
inverse temperature b, for two values of the packing fraction g=5×10−4

and 5×10−3. The agreement with the MC data (circles) is very good for uex

and less satisfactory for cexV . Our results are getting worse when increasing g,

Fig. 1. The plot of cexV /kB vs. the packing fraction g at bc=2: present result (3.14) (solid
line), formula (1.5d) (triangles) and MC simulations (circles).
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Fig. 2. The plot of uex vs. the inverse temperature b for g=5×10−4 and 5×10−3: present
result (3.12) (solid lines) and MC simulations (circles).

Fig. 3. The plot of cexV /kB vs. the inverse temperature b for g=5×10−4 and 5×10−3:
present result (3.13) (solid lines) and MC simulations (circles).
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what is obvious, and when approaching point b=3: close to this point, the
next (neglected) term of the hard-core corrections [which eliminates the
next singularity of n(z, 0) at b2=3] starts to be important.

5. CONCLUSION

To recapitulate briefly the present paper, we have derived the leading
correction to the exact thermodynamics of pointlike charges in the stability
region 0 [ b < 2 of the 2dCG (8) due to presence of the hard core of diam-
eter s around particles. The derivation was based on a combination of the
electroneutrality sum rule (2.1) with the leading term of the short-distance
expansion of Ursell functions in (2.10). The obtained basic formula (2.11)
has an important feature: n(z, s) reduces to the exact n(z, 0), given by (1.3),
when sQ 0. Since both the electroneutrality sum rule (2.1) and the leading
term of the short-distance behavior (2.10) still apply beyond the collapse
point bc=2, up to bKT=4, we have proposed an analytic continuation of
the relation (2.11) outside of the stability region. Although this is not a
rigorously justified step [we do not know anything about the convergence
properties of the complete series on the rhs of (2.11)], the extended formula
(2.11) exhibits the expected behavior of the 2dCG when crossing the
collapse point. Namely, for s > 0, the leading correction term exactly
cancels the singularity of n(z, 0) at the collapse point bc=2 as it should be.
As was argued at the end of Section 2, there are indications that formula
(2.11) is exact in the low-density limit up to b2=3 where another singular-
ity of n(z, 0) should be canceled by the next correction term proportional
to z4s6−2b. In Section 3, we have derived the complete thermodynamics of
the 2dCG implied by the relation (2.11), and tested in at the collapse point
bc=2 (12) and in the limit sQ 0 for 2 [ b < 3. (6) The comparison with the
MC simulations, (4) presented in Section 4, is satisfactory.

The extension of the thermodynamic treatment of the 2dCG around
and beyond b2=3, up to bKT=4, requires to construct a systematic short-
distance expansion of the Ursell functions in (2.3). This short-distance
expansion, which leading term is presented in (2.10), can be done, in prin-
ciple, systematically term by term. In basic formula (2.11), in analogy with
the finding for the obtained leading ‘‘1’’ term, every new term of order ‘‘l’’
should remove the singularity of the pointlike n(z, 0) at the threshold bl
given by (1.6) in order to make the particle density n(z, s) finite and posi-
tive up to bl+1. Thus, the density-fugacity relationship is expected in the
form

n(z, s)=n(z, 0)− C
.

l=1

c̄2l(b)
bl−b

(z2sbl −b) l (5.1)
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where the coefficient c̄2l(b) (l=1, 2,...) is regular at b=bl. According to
our result (2.11), c̄2(b)=4p. Taking into account the formula (1.3) for
n(z, 0), the exponent of z, 4/(4−b), is equal to 2l at the pole b=bl and
the exponent of s in (5.1) is put by dimensional reasons. Note that since
n=z“(bp)/“z, (5.1) automatically leads to the ansatz (1.7) with e=0
[because we have not taken into account in (2.6) ‘‘slight’’ hard-core
changes of the correlation functions Dq, ±q defined by (2.5)]. This confirms
the ‘‘subtraction’’ mechanism of Fisher et al., (17) indicating a total absence
of phase transitions in the interval 2 [ b < 4 which were suggested in ref. 14.
On the other hand, the coefficients bk and {b̄2l}

.

l=1 are singular functions of b,
which is in contradiction to the analytic structure of the ansatz (1.7)
proposed in ref. 17. The lth term in the sum on the rhs of (5.1) has the
correct behavior in the limit sQ 0: it goes to 0 when b < bl and removes
the singularity of n(z, 0) at b=bl (and simultaneously gives rise to a
logarithmic dependence on the hard core at this point). A systematic
generation of the coefficients c̄l(b) is our task for the future.
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